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Buoyancy flux bounds for surface-driven flow
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I calculate the optimal upper bound, subject to the assumption of streamwise invar-
iance, on the long-time-averaged buoyancy flux B∗ within the flow of an incom-
pressible stratified viscous fluid of constant kinematic viscosity ν and depth h

driven by a constant surface stress τ = ρu2
�, where u� is the friction velocity with

a constant statically stable density difference �ρ maintained across the layer. By
using the variational ‘background method’ (due to Constantin, Doering and Hopf)
and numerical continuation, I generate a rigorous upper bound on the buoyancy
flux for arbitrary Grashof numbers G, where G = τh2/(ρν2). As G → ∞, for flows
where horizontal mean momentum balance, horizontally averaged heat balance, total
power balance and total entropy flux balance are imposed as constraints, I show
numerically that the best possible upper bound for the buoyancy flux is given by
B∗ � B∗

max = u4
�/(4ν)+O(u3

�/h). This bound is independent of both the overall strength
of the stratification and the layer depth to leading order. This bound is associated
with a velocity profile that has the scaling characteristics of a somewhat decelerated
laminar, linear velocity profile.

1. Introduction
In stratified geophysical flows, such as occur in the atmosphere and ocean, it is

critically important to understand how external forcing mechanisms drive the flow,
trigger and sustain turbulence, and modify irreversibly (i.e. ‘mix’) the density dis-
tribution within the flow. Such an understanding is essential to the development
of accurate parameterizations within larger-scale models of mixing processes, which
have a qualitative impact on the time evolution of the flow. One particular issue
of interest to parameterizations is the question of whether it is possible to identify
bounds on mixing, dependent potentially on various parameters which characterize
the flow behaviour. Naturally, it is to be expected that the properties of the mixing are
strongly dependent on the particular form of the flow forcing mechanisms (typically
associated with vertical velocity shear) and so it is also necessary to consider a
range of realistic forcing mechanisms to build up a general and useful picture of the
properties of bounds on mixing within stratified flows.

A valuable tool for the identification of such bounds is the so-called CDH
method, (following Plasting & Kerswell 2003, henceforth referred to as PK03) due to
Constantin and Doering (see Doering & Constantin 1992). This method relies on
a particular insight of Hopf (1941) and was subsequently improved by Nicodemus,
Holthaus & Grossmann (1997). The method uses a non-unique decomposition of the
flow fields into steady ‘background’ fields that satisfy the inhomogeneous boundary
conditions, and ‘fluctuations’ away from these backgrounds which satisfy homo-
geneous boundary conditions. As discussed in more detail below, these background
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fields also may act (within a variational problem) as Lagrange multipliers, imposing
constraints related to horizontal averages of the flow governing equations. Conven-
tional techniques of the calculus of variations and numerical continuation may then
be used to generate bounds on quadratic flow quantities of interest, such as the long-
time average of the mechanical energy dissipation rate (see e.g. PK03) or the long-time
average of the buoyancy flux (see Caulfield, Tang & Plasting 2004, henceforth CTP04).

These studies considered the canonical problem of homogeneous and stratified plane
Couette flow respectively, i.e. the flow of a viscous fluid between two plates being
driven at a constant relative velocity, and when stratified, being maintained at a
constant (stable) temperature difference, so that a constant density jump existed
across the fluid layer. It is to be expected that the properties of the bounds on
the dissipation and buoyancy flux are strongly dependent on the particular form
of the flow forcing. Indeed, one particular type of forcing that commonly occurs
is the application of stress τ = ρu2

� (where u� is the friction velocity) at the upper
surface of a layer of fluid of depth h over a solid lower surface as happens, for
example, when wind blows over a body of water. Tang, Caulfield & Young (2004)
(henceforth TCY04) developed both upper and lower bounds for the mechanical
energy dissipation rate for an unstratified fluid forced in this way. They found that
the upper bound on the dissipation was given by ε � εmax = u4

�/ν, i.e. the dissipation
associated with the laminar linear velocity solution uL = τ (z +h)/(ρν)ı̂ , where ı̂ is the
unit vector in the streamwise x-direction. The lower bound was shown to be O(u3

�/h),
independent to leading order of viscosity, as the Grashof number G, defined as
G = τh2/(ρν2) = u2

�h
2/ν2 → ∞. This lower bound is associated with a non-trivial flow

velocity, such that the surface velocity has been substantially decelerated (when G is
large) from the laminar value uL(0) = u2

�h/ν = G1/2u� to a value of order u� � uL(0).
The aim of this paper is to identify bounds on the long-time average of the buo-

yancy flux of this flow. Since CTP04 demonstrated a close relationship between the
stratified flows optimizing the buoyancy flux and the unstratified flows optimizing the
dissipation in plane Couette flow, it is entirely plausible that the results of TCY04
will be relevant to this calculation. The rest of this paper is organized as follows. In
§ 2, I describe the model and the CDH method briefly, and in particular derive the
functional which is optimized. In § 3, I show that this system can indeed be closely
related to the system considered in TCY04, and so I derive rigorous bounds on the
buoyancy flux directly, and discuss the properties of these results. Finally, in § 4, I
draw some conclusions.

2. Model
As in TCY04, I consider an incompressible layer of fluid of constant depth h, vari-

able temperature T , with kinematic viscosity ν, and thermal diffusivity κ . I assume
that the density ρ of the fluid varies linearly with absolute temperature T . Following
TCY04, I model the effect of the streamwise surface stress forcing τ ı̂ with a vertically
varying body force, which typically will be chosen to be localized very close to
the upper boundary. This model flow (referred to as flow B in TCY04) avoids the
complexities of the treatment of boundary variations (see e.g. Courant & Hilbert
1953) while still allowing the study of surface-driven flow. As discussed in more detail
in TCY04, provided the region over which the body force varies is always substantially
shallower than (and embedded within) the characteristic depth of any surface
boundary layer which develops in the bounding flow, this regularized model flow
is equivalent mathematically to a purely surface-stress-driven flow. All calculations
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Figure 1. Schematic diagram showing the body-forced flow which, when the forcing profile
function ψ only varies significantly from −1 in a thin region near z = 0, is equivalent to a
surface-stress-driven flow (see CTP04 for a fuller discussion, where this flow is referred to
as flow B). The density boundary conditions and the laminar velocity profile (with surface
velocity u2

�/ν, or non-dimensionally G) are also shown.

were monitored to ensure that this embedding condition remained satisfied. I further
assume that the constant total variation in density �ρ from z = h to z = 0 is sufficiently
small compared to the surface density ρ0 for the Boussinesq assumption to be valid.
A schematic representation of the flow is shown in figure 1.

Therefore, the governing equations, non-dimensionalized with κ , h, ρ0, and �ρ,
become

ut + u · ∇u + ∇p − σ∇2u − σ 2Gψz ı̂ + σ 2GJ k̂ = 0, (2.1a)

ρt + u · ∇ρ − ∇2ρ = 0, (2.1b)

∇ · u = 0, (2.1c)

where the non-dimensional density ρ is the difference of the actual density from the
(fixed surface) density scaled with the total density difference �ρ. The appropriate
boundary conditions are

u(−1) = 0, ρ(−1) = 1; u1z(0) = u2z(0) = u3(0) = ρ(0) = 0, (2.2)

and in general, the behaviour of the system depends on three non-dimensional
numbers, namely the Grashof number G, the (bulk) Richardson number J , and the
Prandtl number σ , defined as

G =
τh2

ρν2
=

u2
�h

2

ν2
, J =

g�ρh

ρ0u2
�

, σ =
ν

κ
, (2.3)

defining in turn the friction velocity u�.
I impose a long-time-average and both x-periodic and y-periodic boundary

conditions across −Lx < x < Lx , and −Ly < y < Ly and so introduce a reasonable
time and horizontal averaging operator:

q(x, t) ≡ lim
T →∞

1

4LyLxT

∫ T

0

∫ Ly

−Ly

∫ Lx

−Lx

q(x, t) dx dy dt ; q(x, t) = q(z) + q̂(x, t), (2.4)

thus defining the meanless component q̂ (such that q̂ = 0) and a volume average:

〈q(x, t)〉 =

∫ 0

−h

q dz . (2.5)
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The vertical distribution of the body force is captured by the profile function ψ ,
which is normalized so that 〈ψ2〉 = 1. Indeed, to model surface-driven motions, I
choose ψ 
 −1 over most of the depth of the fluid layer (and so there is little forcing)
with sharp gradients in ψ (and hence forcing of u) localized very close z = 0, where,
to be consistent with the upper boundary condition on the velocity, ψ(0) = 0.

I wish to construct a bound on the long-time average of the buoyancy flux
B = σ 2GJ 〈u3ρ〉, or equivalently the variance of density fluctuations χ = σ 2GJ 〈|∇ρ|2〉,
since it is straightforward to establish that χ = B+σ 2GJ . I use the CDH method, and
so I decompose both the velocity and the density field into steady one-dimensional
‘backgrounds’ (which do not necessarily correspond to horizontally averaged means)
with the same boundary conditions as the actual flow, and three-dimensional, unsteady
fluctuations with homogeneous boundary conditions. Therefore, I postulate that

u(x, t) = φ(z)ı̂ + v(x, t), ρ(x, t) = τ (z) + θ(x, t), (2.6)

0 = φ(−1) = θ(−1), τ (−1) = −1, v(−1) = 0,

0 = φz(0) = v1z(0) = v2z(0) = v3(0) = τ (0) = θ(0)

}
. (2.7)

As is well-known (and was mentioned in the introduction) a particular attraction
of such a decomposition is that the background fields may be thought as fulfilling
two roles: they act both as a representation of the actual bounding flow fields, and
also as Lagrange multipliers to impose certain physically plausible constraints within
a functional which can then be optimized, using conventional variational techniques,
to obtain a rigorous bound on a flow quantity of interest. (See PK03 for more details)
Since here we wish to construct a bound on the buoyancy flux, a natural functional
to consider is

L = σ 2GJ 〈|∇ρ|2〉 − a〈φ′(u1u3 − σu1
′ − σ 2Gψ)〉

− a(σ 〈‖∇u‖2〉 + σ 2GJ 〈ρu3〉 + Gσ 2〈ψu1
′〉)

− bσ 2GJ
(
〈|∇ρ|2〉 + 1

2

[
ρ ′∣∣

0
+ ρ ′∣∣]) − bσ 2GJ 〈τ ′(ρu3 − ρ ′)〉, (2.8)

where q ′ = dq/dz, for purely z-dependent quantities q(z). Written in this way, it is
apparent that there are four Lagrange multipliers imposing four physical constraints:
a which imposes total power balance, b which imposes entropy flux balance, aφ′

which imposes horizontally averaged streamwise momentum balance, and bτ ′ which
imposes horizontally averaged heat balance.

3. Results
Through considering the potential energy balance, it is straightforward to establish

that b =2 − a in all cases where the buoyancy flux is non-zero. Then, a necessary
condition for a particular set of v, φ, θ , τ , and a to constitute a bounding solution
is for the set to be a solution of the Euler–Lagrange equations obtained from taking
variations of the functional L with respect to the members of this set. However,
there is the possibility that there are several such solutions, and a further condition
required to constitute an upper bound is that the solution satisfies a so-called spectral
constraint (see for example PK03) which essentially demonstrates which solution to
the Euler–Lagrange equations constitutes an upper bound.

A simple way to appreciate this issue is through consideration of the properties of
the laminar solution:

θL = 0, vL = 0, u1Lz = φ′
L = −σGψ, ρLz = τ ′

L = −1. (3.1)
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For all values of G with a = 1 (and hence b =1) this solution satisfies the Euler–
Lagrange equations, predicting a zero bound on the buoyancy flux, due to the
absence of vertical velocity u3. The spectral constraint for this flow is simply

σ 〈‖∇V‖2〉 − σG〈ψV1V3〉 � 0, (3.2)

for all incompressible flow fields V which satisfy the homogeneous boundary
conditions. This constraint clearly corresponds to the requirement that the flow
is energy stable (see Joseph 1976) in the sense that all perturbations must decay
monotonically with time. Therefore, the laminar flow with a = 1 constitutes a bound
provided that the flow is energy stable, which is true if G � Ges = 51.7 (see TCY04).
For larger values of G, there exist non-trivial velocity fields V which violate the
spectral constraint. However, analogously to the situation discussed in the context
of stratified plane Couette flow (see CTP04) it is possible to identify a non-trivial
solution to the full set of Euler–Lagrange equations with a =1 that still continues to
satisfy the appropriate spectral constraint.

The fact that a bounding solution set can be shown to exist for the parameter a =1
has profound implications for the behaviour of the associated density field. Indeed,
when a = 1, the density field decouples from the velocity field, and is only required to
satisfy

τ ′ = −1, θ
′
= v̂3θ̂ − 〈v̂3θ̂〉, σ 2GJ 〈v̂3θ〉 =

σ

4
〈(φ′ + σGψ)2〉. (3.3)

In these expressions, the velocity fields are given as solutions of the Euler–Lagrange
equations

2v̄′
1 + (φ′ + σGψ) = 0, (3.4a)

2v̂1v̂3 − σ (φ′ + σGψ) = 0, (3.4b)

2σ∇2v̂ − φ′


v̂3

0
v̂3


 − ∇p̂ = 0, (3.4c)

where the perturbation pressure p̂ imposes incompressibility on the meanless part v̂,
as defined by (2.4). For the solution set actually to constitute an (upper) bound, the
so-determined φ (solution to (3.4)) must satisfy the spectral constraint, which takes
the form

〈φ′V1V3〉 + σ 〈‖∇V‖2〉 � 0, (3.5)

for all incompressible V with homogeneous boundary conditions. For this solution
set, from (3.3), the long-time-averaged buoyancy flux B is bounded by

B � Bmax =
σ

4
〈(φ′ + σGψ)2〉. (3.6)

Construction of a solution set for these equations to arbitrary values of G can be
simply achieved by noting that, under the transformations

v̂ = σ v̂λ, φ = λσφλ, G = (2 − λ)Gλ, (3.7a)

λ =
〈‖∇v̂λ‖2〉

Gλ〈ψv̂1λv̂3λ〉
=

2〈‖∇v̂‖2〉
G〈ψv̂1v̂3〉 + 〈‖∇v̂‖2〉 , (3.7b)

the Euler–Lagrange equations (3.4b) and (3.4c) determining φ and v̂, and the spectral
constraint (3.5) correspond to those used in TCY04 to generate a lower bound Emin on
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the mechanical energy dissipation rate in an identically forced flow. In that problem,
the parameter λ is determined from (3.7b) as part of a solution set including v̂λ and
φλ. Here, on the other hand, for the problem of maximizing the long-time average
of the buoyancy flux, once a given solution v̂λ, φλ and λ is identified at Gλ from the
mechanical energy dissipation rate problem, the appropriate corresponding value for
G for the buoyancy flux problem is determined using this value of λ in (3.7a).

Since, as discussed in TCY04, λ= 1 at the energy stability point, G =Ges =Gλ there.
However, as Gλ increases, λ decreases, though it still remains positive, a fact which
can also be established from (3.7b), since

σG〈ψv̂1v̂3〉 = σ 〈‖∇v̂‖2〉 + 2B. (3.8)

Therefore, the required solution set φ, v̂ for the upper bound for the long-time-
averaged buoyancy flux at a particular G corresponds to the solution set φλ, v̂λ for
the lower bound on the dissipation at a typically smaller value Gλ of the Grashof
number. Using this solution set, it is then possible to construct the upper bound on
the long-time-averaged buoyancy flux from the previous result presented in TCY04
without further calculation, if it is once again assumed that streamwise variations can
be ignored.

From (3.6), using the transformations (3.7a), the bound corresponds to

B � Bmax = (1 − λ)σ 3

[
G2

(2 − λ)2
− Emin|G/(2−λ)

]
. (3.9)

For the particular form of the forcing profile function ψ considered in TCY04 (where
ψ(z) was labelled σ (z)) with ψ 
 −1 over all but a vanishingly small layer (always
verified to be significantly smaller than any boundary layers which develop: see TCY04
for details) near the upper interface at h = 0 where ψ → 0 (thus mimicking a surface-
stress-driven flow), Emin was calculated numerically using the method originally
described in PK03, which is based upon the numerical continuation package PITCON
(Rheinboldt & Burkhardt 1983a, b). The calculated bound for such a profile function
ψ is

E|Gλ
� Emin|Gλ

= 7.531G
3/2
λ − 20.3Gλ + O

(
G

1/2
λ

)
, (3.10)

while as Gλ → ∞, λ=O(G−1/2
λ ), thus implying that, to leading order, as G → ∞

B � Bmax = σ 3 G2

4
+ O

(
G3/2

)
. (3.11)

The actual bound for all calculated G is shown in figure 2(a). For simplicity, the
Prandtl number σ is set to one.

Dimensionally, this implies that the long-time-averaged upper bound on the
dimensional buoyancy flux B∗ � B∗

max is

B∗ � B∗
max =

κ3

h4
Bmax =

u4
�

4ν
+ O

(
u3

�

h

)
, (3.12)

using the friction velocity as defined in (2.3).
This bounding scaling involves the fluid kinematic viscosity, yet is independent

of the flow depth. These characteristics can best be understood by considering the
flow velocity fields which determine this bound, since the density field is determined
completely by the velocities. A first natural step is to consider the long-time-averaged
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Figure 2. Plots against Grashof number of: (a) the upper bound on the long-time-averaged
buoyancy flux scaled with the square of the Grashof number i.e. Bmax/G2; (b) the associated
value of the flux Richardson number Rif as defined in (3.18). For simplicity the Prandtl
number σ = 1.

mechanical energy dissipation rate E, defined non-dimensionally as

E ≡ σ 〈‖∇u‖2〉 = σ 〈(φ′ + v1
′)2〉 + σ 〈‖∇v̂‖2〉 = E + Ê, (3.13)

for the velocity fields which determine the upper bound on the buoyancy flux.
Using (3.4a), (3.4b), (3.6), (3.7b) and (3.8), it is possible to show that

Êmax =

(
λ

1 − λ

)
Bmax, Emax = σ 3G2 +

(
λ − 3

1 − λ

)
Bmax, (3.14)

where the subscript ‘max’ denotes using the velocity fields associated with the upper
bound on the buoyancy flux, and so

Emax = σ 3G2 −
(

3 − 2λ

1 − λ

)
Bmax → σ 3G2

4
+ O

(
σ 3G3/2

)
, (3.15)

as G → ∞. This associated dissipation is substantially larger than the lower bound
identified in TCY04, which is O(σ 3G3/2) within the non-dimensionalization used in
this paper, and indeed it has the scaling (though not the numerical factor) associated
with the upper bound derived in TCY04 corresponding to a laminar velocity profile
driven by the surface forcing, which corresponds to

EL = σ 3G2; E∗
L =

u4
�

ν
. (3.16)

As is apparent from (3.7a), since λ=O(G−1/2) as G → ∞, φ � φλ at large G. This
is a major, qualitative difference between the two problems. For both problems, the
background velocity field has the same structure, with boundary layers of depth of
order O(G−1/2) where, for this problem, φ′ =O(σG), with φ′ ≈ 0 in the interior of
the fluid layer, as is shown in figure 3(a). Such a structure of course is enforcing the
horizontally averaged streamwise momentum constraint, with the boundary forcing
being balanced by the Reynolds stress. However, whereas in the unstratified problem,
the gradient of the mean velocity profile in the interior of the flow domain is O(σG1/2),
rising to O(σG) only within the boundary layers, since u1

′ = φ′ + v1
′ by definition,

(3.4a) and (3.7a) imply that, for the stratified problem,

u1
′ = 1

2
(φ′ − σGψ) 
 σG

2

 σGλ as G → ∞. (3.17)
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Figure 3. Vertical profiles of (a) φ/φ(0) and (b) u1/u1(0) associated with an upper bound
on the buoyancy flux for: G = 1065 (plotted with a thin solid line); G = 10108 (dashed line);
G =23798 (dotted line); G = 172097 (dot-dashed line); G = 462577 (thick solid line). For these
choices, u1(0)/φ(0) = 1.6186, 3.7497, 5.4384, 6.1211 and 6.8485 respectively, which ratio is
O(G1/2) as G → ∞ as expected.

Therefore, to leading order at least, the mean velocity profile associated with the
upper bound in the long-time-averaged buoyancy flux corresponds to a mean laminar
velocity profile at smaller (by a factor of two) Grashof number. The contribution
to the dissipation from the horizontally averaged flow Emax completely dominates

the dissipation at large G, since (3.14) implies that Êmax =O(λBmax) = O(σ 3G3/2)
as G → ∞. Also, since the background profile φ becomes insignificant to leading
order, the mean velocity profile does not exhibit the strong boundary layer structure
characteristic of φ discussed in TCY04, and the mean velocity profile is essentially
laminar, with the same qualitative constant-gradient linear structure as a laminar
flow. In figure 3, we illustrate this fact by plotting characteristic vertical profiles of
both φ/φ(0) and u1/u1(0) for flows with various G. It is apparent that the evident
boundary layers in the structure of φ have little influence on the structure of u1,
particularly as G approaches large values.

Clearly, the laminarity of the mean flow dominates and makes the dissipation
large compared to the lower bound scaling for an unstratified flow. This is due
fundamentally to the fact that the surface velocity is largest for the laminar flow,
being essentially σGλ for any Gλ, and thus allowing the largest overall possible values
for velocity gradients throughout the flow. Such high-speed surface flows similarly
lead to the largest possible gradients in density variations, and hence to maximization
of the flow buoyancy flux. However, since the energy input by the surface forcing is
balanced not only by the viscous dissipation, but also by the buoyancy flux, there
appears to be a necessity for some deceleration (by a factor of two) of the surface
velocity from its maximum possible value, since as G → ∞, u1(0) → σG/2.

In essence, the upper bound on the buoyancy flux appears to coincide with
a flow that is, in some sense, ‘pseudo-laminar’, with a scaling characteristic of a
laminar velocity profile. This has implications for the flux Richardson number Rif , or
equivalently the mixing efficiency of the flow η, defined, for the bounding solutions,
as

η = Rif ≡ Bmax

Bmax + Emax

=
(1 − λ)Bmax

(1 − λ)σ 3G2 − (2 − λ)Bmax

, (3.18)

upon substituting the appropriate value for the dissipation associated with the
upper bound for the buoyancy flux, as defined in (3.11). Defined in this way, the
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flux Richardson number quantifies the proportion of the energy input into the
flow that leads to long-time-averaged buoyancy flux, and hence irreversible mixing.
Asymptotically, using (3.11), Rif → 1/2 as G → ∞, implying an equipartition between
the energy from the forcing which is lost to viscous dissipation and the energy which
is lost to buoyancy flux (and hence the potential energy reservoir). This quantity is
plotted in figure 2(b) for all G.

Furthermore, although, just as in CTP04, the detailed structure of the density
profile cannot be determined explicitly due to the degeneracy in the Euler–Lagrange
equations for the density field, certain aspects of the spatial localization of the mixing
can be inferred from (3.3), (3.4a) and (3.4b). At the lower boundary, these equations
imply that

σ 2GJθ
′∣∣

z=−1
= −Bmax; u1

′∣∣
z=−1

= −σGψ. (3.19)

The appropriate measure of the relative importance of the stratification and shear is
the gradient Richardson number Ri(z), defined as

Ri(z) = −σ 2GJ
dρ

dz

(
du1

dz

)−2

. (3.20)

Therefore, at the lower boundary, as G → ∞

Ri(−1) =
Bmax + σ 2GJ

σ 2G2ψ2

 σ

4
, (3.21)

and so locally the stratification remains significant. This is principally due to the fact
(as already noted) that the velocity field does not develop strong boundary layers,
and so the shear is not increased markedly near z = − 1. Furthermore, from (3.3),
the magnitude of the gradient in θ must decrease towards the interior of the flow,
while the velocity shear remains approximately constant. Therefore, Ri(z) is likely to
be substantially less in the interior of the flow. This implies that the mixing is likely
to be dominated by mixing in the interior of the flow, rather than at the boundaries,
which is a major qualitative difference between this flow and the stratified Couette
flow discussed in CTP04.

4. Conclusions
Using the CDH method, I have generated a bound on the long-time average of the

bouyancy flux within a surface-driven flow. Just as in plane Couette flow (considered
in CTP04) the bound is associated with a decoupling of the density fields from
the velocity fields in the Euler–Lagrange equations of the variational problem. This
leads to a close relationship between the meanless fluctuation and background fields
associated with the buoyancy flux bound and the equivalent fields determined for
identifying bounds on dissipation in an unstratified flow (as discussed in more detail
in WCP04).

However, this analogous decoupling actually leads to a qualitative difference
between the properties of the bounds for stratified plane Couette flow and the
surface-driven flow discussed in this paper. For surface-driven flow, the characteristic
scaling for the upper bound on the long-time average of the buoyancy flux is that of a
laminar flow as it is O(u4

�/ν), dependent on the viscosity of the fluid, but independent
of the layer depth. The associated velocity profile is linear, with a dimensional
surface velocity of u2

�/(2ν) to leading order. This deceleration from the purely laminar
unstratified velocity profile (with surface velocity u2

�/ν) is due to the surface forcing
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also feeding energy into the potential energy reservoir through the buoyancy flux, and
hence mixing. Although the associated density distribution is not uniquely specified,
by consideration of the properties of the gradient Richardson number at the lower
boundary of the flow, it is apparent that significant mixing is to be expected in the
interior of the flow domain.

This pseudo-laminarity in the bounding flows at least suggests the possibility of
high levels of very efficient mixing within such flows. This suggestion is consistent with
direct numerical simulations of transitional shear flows, where, at least under some
circumstances, Smyth, Moum & Caldwell (2001) observed that significant amounts
of mixing could occur during the ‘pre-turbulent’ phase of flow evolution, when the
dissipation and buoyancy flux within the flow exhibit laminar-like scaling properties.
It also is a possible explanation for the observations of anomalously high mixing
efficiency (of the order of Rif ∼ 1/2) observed in the stratified interior of Lake
Baikal (see figure 4e of Ravens et al. 2000) where wind forcing appears to be an
important driving mechanism. However, as is a common concern with bounding
calculations such as are presented here, it remains to be seen how closely real flows
approach the predicted bound (which can naturally be investigated using direct
numerical simulation) and also whether there are further appropriate physically
plausible constraints which should be applied to improve the quality and usefulness
of the calculated bounds.
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